On the constants for some Sobolev imbeddings

نویسندگان

  • Carlo Morosi
  • Livio Pizzocchero
چکیده

We consider the imbedding inequality ‖ ‖ Lr(R d ) ≤ Sr,n,d ‖ ‖Hn(Rd); H n(R) is the Sobolev space (or Bessel potential space) of L2 type and (integer or fractional) order n. We write down upper bounds for the constants Sr,n,d, using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if (r = 2 or) n > d/2, r = ∞, and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on Sr,n,d for n > d/2, 2 < r < ∞; in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Slice Conditions and Hölder Imbeddings

We introduce weak slice conditions and investigate imbeddings of Sobolev spaces in various Lipschitz-type spaces.

متن کامل

Limiting Imbeddings { the Case

We consider fractional Sobolev spaces with dominating mixed derivatives and prove some generalizations of Trudinger's limiting imbedding theorem.

متن کامل

Limiting Imbeddings – the Case of Missing Derivatives

We consider fractional Sobolev spaces with dominating mixed derivatives and prove some generalizations of Trudinger’s limiting imbedding theorem.

متن کامل

Extrapolation of the Sobolev theorem and dimension-free imbeddings

We prove dimension-invariant imbedding theorems for Sobolev spaces using extrapolation means.

متن کامل

On weighted critical imbeddings of Sobolev spaces

Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000