On the constants for some Sobolev imbeddings
نویسندگان
چکیده
We consider the imbedding inequality ‖ ‖ Lr(R d ) ≤ Sr,n,d ‖ ‖Hn(Rd); H n(R) is the Sobolev space (or Bessel potential space) of L2 type and (integer or fractional) order n. We write down upper bounds for the constants Sr,n,d, using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if (r = 2 or) n > d/2, r = ∞, and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on Sr,n,d for n > d/2, 2 < r < ∞; in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.
منابع مشابه
Weak Slice Conditions and Hölder Imbeddings
We introduce weak slice conditions and investigate imbeddings of Sobolev spaces in various Lipschitz-type spaces.
متن کاملLimiting Imbeddings { the Case
We consider fractional Sobolev spaces with dominating mixed derivatives and prove some generalizations of Trudinger's limiting imbedding theorem.
متن کاملLimiting Imbeddings – the Case of Missing Derivatives
We consider fractional Sobolev spaces with dominating mixed derivatives and prove some generalizations of Trudinger’s limiting imbedding theorem.
متن کاملExtrapolation of the Sobolev theorem and dimension-free imbeddings
We prove dimension-invariant imbedding theorems for Sobolev spaces using extrapolation means.
متن کاملOn weighted critical imbeddings of Sobolev spaces
Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000